QUESTION 1

Sketched below is the graph of $f(x)=x^{2}-9$

1.1 Determine the coordinates of A, B and C.
(4)

$$
\begin{aligned}
& y-\text { int: } x=0 \\
& C(0 ;-9) \\
& x-\text { int: } y=0 \\
& 0=x^{2}-9 \\
& 0=(x+3)(x-3) \\
& x=-3 \text { or } x=3
\end{aligned}
$$

$$
A(-3 ; 0)^{\sqrt{2}} B(3 ; 0)^{v}
$$

1.2 What is the equation of the axis of symmetry?
1.3 What are the coordinates of the turning point?
$C(0 ;-9)$
1.4 What is the domain of $f(x)$?
(2)
$x \in \mathbb{R}$
1.5 What is the range of $f(x)$?
(2)

QUESTION 2

Consider the function $g(x)=\frac{3}{x}+2$ sketched below．

2．1 Determine the coordinates of D ．
（3） S 1209
$\left\{\begin{array}{l}x-\text { int }: y=0 \\ 0=\frac{3}{x}+2 \\ -2=\frac{3}{x} \\ x=-\frac{3}{2} \\ D\left(-\frac{3}{2} ; 0\right)\end{array}\right.$

2．2 What are the equations of the asymptotes？
$x=0$
$y=2$

2．3 What are the equations of the axis of symmetry？
（2） S 1204
$y=x+2$
$y=-x+2$

2．4 Write down the domain of $g(x)$ ．
$x \in \mathbb{R} ; x \neq 0$

2．5 Write down the range of $g(x)$ ．
$y \in \mathbb{R} ; y \neq 2$
（2）\quad S1204

ソール：
（2） S 1206 b
（2）

QUESTION 3

Sketched below is the graph of $h(x)=-4.3^{x}+12$

3.1 Determine the coordinates of E and F .
(6)

$$
\begin{array}{ll}
\hline x-\text { int }: y=0 & y-\text { int: } x=0 \\
0=-4.3^{x}+12 & y=-4.3^{0}+12 \\
-12=-4.3^{x} & =-4(1)+12 \\
3=3^{x} & =-4+12 \\
\therefore x=1 \\
E(1 ; 0) & =8
\end{array}
$$

3.2 Write down the equation of the asymptote.
$y=12$
3.3 What is the domain of $h(x)$?
$x \in \mathbb{R} \quad \checkmark \quad \downarrow$
3.4 What is the range of $h(x)$?
$y \in(-\infty ; 12) \quad$ OR $\quad y<12 ; y \in \mathbb{R}$
(1) S1204

S1206b
(2) S1206b

QUESTION 4

Sketch the following graphs on the given set of axes. Show all intercepts with the axes as well as any asymptotes, axis of symmetries or turning points:
$4.1 \quad y=3 x-6$
Shape:
$x-$ int: $y=0$
$0=3 x-6$
$6=3 x$
$x=2$
$y-$ int: $x=0$
$y=-6$

$4.2 \quad y=-x^{2}+25$

$$
\begin{equation*}
4.3 \quad y=\frac{-3}{x}-1 \tag{5}
\end{equation*}
$$

$$
\begin{aligned}
& \text { Shape: } \\
& y \text { - int: none } \\
& x-\text { int: } y=0 \\
& 0=\frac{-3}{x}-1 \\
& 1=\frac{-3}{x} \\
& x=-3
\end{aligned}
$$

$4.4 \quad y=\left(\frac{1}{2}\right)^{x}+1$

QUESTION 5

Determine the equations of the following functions in the form of $y=m x+c, y=a x^{2}+q$, $y=\frac{a}{x}+q$ or $y=k^{x}+q$.
5.1

$$
\begin{aligned}
& y=m x+c \\
& c=2
\end{aligned}
$$

Subs ($-1 ;-4$)
$-4=m(-1)+2$
$-4-2=-m$
$-6=-m$
$m=6$
$\therefore y=6 x+2$

5.3

$y=\frac{a}{x}+q$

Subs (2;0)
$0=\frac{a}{2}+q$
$0=a+2 q \ldots$ © $\Rightarrow a=-2 q$
Subs ($-4 ;-3$)
$-3=\frac{a}{-4}+q$
$12=a-4 q \ldots 2$
Subs (1) into 2 :
$12=-2 q-4 q$
$12=-6 q$
$q=-2$$\quad \begin{aligned} a & =-2(-2) \\ & =4 \\ \therefore y & =\frac{4}{x}-2\end{aligned}$
$y=k^{x}+q$
$q=0$
Subs $(2 ; 9)$
$9=k^{2}+0$
$k^{2}=9$
$k=3$
$\therefore y=3^{x}$

QUESTION 6

Given below are the graphs of $f(x)=-x^{2}+4$ and $g(x)=x+2$

6.1 Determine the average gradient of $f(x)$ between $x=1$ and $x=3$.
(4)

$$
\begin{aligned}
f(x) & =-x^{2}+4 \\
f(1) & =-(1)^{2}+4=3 \therefore(1 ; 3) \\
f(3) & =-(3)^{2}+4=-5^{2} \therefore(3 ;-5) \\
m_{\text {ave }} & =\frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}} \\
& =\frac{3-(-5)}{1-3} \\
& =-4
\end{aligned}
$$

6.2 Determine the coordinates of A and E
(where the graphs intercept)
$\therefore f(x)=g(x)$
$-x^{2}+4=x+2$
$-x^{2}-x+4-2=0$
$x^{2}+x-2=0$
$(x+2)(x-1)=0$
$x=-2 \quad$ or \quad

$x=-2+2$	$y=1+2$
$y=0 \quad$	$y=3$
$\therefore A(-2 ; 0)$	$\therefore E(1 ; 3)$

6.3 Given that OH is 3 units, determine the length of FG .

$$
\begin{aligned}
g(3) & =3+2 \\
& =5 \\
& \\
f(3) & =-(3)^{2}+4 \\
& =-5 \\
F G & =5-(-5) \\
& =10
\end{aligned}
$$

6.4 If it is given that IJ is 2 units, determine the coordinates of I.
(Distance $=$ "top graph" - " bottom graph" $)$
$I J=f(x)-g(x)$
$2=-x^{2}+4-(x+2)$
$2=-x^{2}+4-x-2$
$x^{2}+x-4+2+2=0$
$x^{2}+x=0$
$x(x+1)=0$
$x=0 \quad$ or $\quad x=-1$
$f(-1)=-(-1)^{2}+4$
$=3$
$\therefore I(-1 ; 3)$

Total: 75 Marks

