EUCLIDIAN EEDMETRY

Theorem 1

A line drawn from the centre of a circle,

perpendicular to a chord, bisects the chord.

"line from centre \perp to chord"

Theorem 1 (converse)

A line drawn from the centre of a circle,
to the midpoint of a chord, will be perpendicular to the chord. "line through centre and midpoint"

Theorem 2

The perpendicular bisector of a chord passes through the centre of the circle.
"perp. bisector of chora"

Theorem 3

The angle subtended by an arc at the centre of a circle is double the size of the angle subtended by the same arc at any point on the circumference of the circle.

" \angle at centre $=2 x \angle a t$ circumf."

Theorem 3 (collories)

\rightarrow The diameter subtends a right angle at the circumference of the circle.
\rightarrow If the angle at the circumference of a circle is a right angle, it is subtended by the diameter.
" \angle in semi-circle"

Theorem 4

The angles on a circle, subtended by a chord of the circle on the same side of the chord are equal.

" 's in the same segment"

Theorem 4 (collories)

Equal chords subtend equal angles at the circumference of a circle
 $=$ chords subtends $=\angle^{\prime} s^{\prime \prime}$

Theorem 4 (converse)

If two angles subtended by the same line are equal, then $A B C D$ is a cyclic quadrilateral " K 's in the same segment"

Theorem 5

The opposite angles of a cyclic quadrilateral are supplementary
"opp. L's of cyclic quad"

Theorem 5 (corollaries)
The exterior angle of a cyclic quadrilateral
is equal to the opposite interior angle.
"Ext \angle of cyclic quad."

Theorem 5 (converse)

A quadrilateral is a cyclic quadrilateral if the opposite angles are supplementary
"opp. L's of quad suppl."

Theorem 7
The angle between the tangent and the chord is equal to the angle subtended in the alternate segment.
"Tan-chord theorem"

