QUESTION 1

Consider the diagram below. It is given that $A B \| C D$.

Determine the size of a, b, c, d, e and f giving reasons for your statements.

Statement	Reason
$\begin{aligned} & a+125^{\circ}=180^{\circ} \\ & a=55^{\circ} \end{aligned}$	$\angle s$ on a str.line
$b=55^{\circ}$	$\text { co - int. } \angle s \mathrm{AB} / / \mathrm{CD}$ OR corresp. $\angle s \mathrm{AB} / / \mathrm{CD}$
$c=125^{\circ}$	alt. $\angle s \mathrm{AB} / / \mathrm{CD}$ OR $\angle s$ on str. line
$d=125^{\circ}$	vert. opp. $\angle s$ OR $\angle s$ on str.line OR corresp. $\angle s$ AB//CD
$\begin{aligned} & e+15^{\circ}=55^{\circ} \\ & e=40^{\circ} \end{aligned}$	ext. \angle of $\triangle \mathrm{OR} \angle$ s of $a \Delta$
$f=40^{\circ}$	vert.opp. $\angle \mathrm{s}$

QUESTION 2

2.1 Study the following diagram.

Determine the value of x with reasons.

Statement	Reason
$4 x+32^{\circ}=113^{\circ}-5 x$	
$4 x+5 x=113^{\circ}-32^{\circ}$	vert.opp. $\angle s$
$9 x=81^{\circ}$	
$x=9 \circ$	

2.2 Study the diagram below.

Determine the value of x with reasons.

2.3 ABCD is a Parallelogram

Calculate x with reasons.
$\left.\begin{array}{|c|c|}\hline \text { Statement } & \text { Reason } \\ \hline 2 x+20^{\circ}=5 x-40^{\circ} \checkmark & \text { opp. } \angle s \text { of } \|^{m} \text { equal } \\ 2 x-5 x=-40^{\circ}-20^{\circ} & \\ -3 x=-60^{\circ} & \\ x=20^{\circ}\end{array}\right)$

QUESTION 3

One summer's day very long ago, two Greek Mathematicians named Pythagoras and his friend Thales of Miletus went for a walk. They walked from the Parthenon past an apple tree and sat down on the grass. At that point they were 5 meters away from the apple tree and 23 meters away from the Parthenon.

Thales of Miletus: "Pythagoras, how high is the Parthenon?"
Pythagoras: "I think it is 14 m high."
Thales of Miletus: "I bet you can't tell me how far we are from the top of the Parthenon."
Pythagoras: "Challenge accepted! In fact, it is so easy a grade 10 student can do it! Here's how...
3.1 Do the calculation that Pythagoras would do to show Thales how far they are from

R8102 the top of the Parthenon. i.e. the length of PQ .

$$
\begin{aligned}
P Q^{2} & =23^{2}+14^{2} \\
P Q & =\sqrt{23^{2}+14^{2}} \\
& =26,93 \mathrm{~m}
\end{aligned}
$$

3.2 Prove that $\triangle P S T \| \triangle P Q R$

(2)

In $\triangle P S T$ and $\triangle P Q R$:
(1) $\widehat{P}=\widehat{P}$
(2) $P \widehat{T} S=P \widehat{R} Q=90^{\circ}$
$3 P \widehat{S} T=P \widehat{Q} R$
$\therefore \triangle P S T / / / \triangle P Q R$
common
Given
corresp. $\angle s$ ST//QR OR $3^{r d} \angle$ of Δ
(AAA)

Pythagoras: "Okay Thales, your turn! Since you are the expert on similar triangles, tell me how high is that apple tree over there."
Thales of Miletus: "Piece of cake!"
3.3 Calculate the height h of the tree.
(3)

R9102
$\frac{S T}{Q R}=\frac{P T}{P R}$
$\frac{S T}{14}=\frac{5}{23}$
$\therefore S T=3,04 \mathrm{~m}$

QUESTION 4

In the diagram below, $\triangle M N O$ is drawn.
$M N \| Q P, M \widehat{O} N=55^{\circ}, Q \widehat{P} O=3 x+40^{\circ}$ and $M \widehat{O} N=2 x-5^{\circ}$

4.1 Determine the size of $P \hat{Q} O$, giving reasons for your answer.
(2)
$P \widehat{Q} O=M \widehat{N} O=55^{\circ} \sqrt{ } \quad$ Corresp. $\angle s ; M N \| P Q$
4.2 Calculate the value of x. Give reasons for your answer.
(4)

$$
\begin{aligned}
& P \widehat{Q} O+Q \widehat{P} O+P \widehat{O} Q=180^{\circ} \quad \angle s \text { of } a \Delta \\
& 55^{\circ}+3 x+40^{\circ}+2 x-5=180^{\circ} \\
& 5 x+90^{\circ}=180^{\circ} \\
& 5 x=90^{\circ} \\
& x=18^{\circ}
\end{aligned}
$$

4.3 Calculate the actual size of $M \widehat{O} N$.

$$
\begin{aligned}
M \widehat{O} N & =2 x-5^{\circ} \\
& =2\left(14^{\circ}\right)-5^{\circ} \\
& =31^{\circ}
\end{aligned}
$$

QUESTION 5

5.1 PQRS is a rhombus with diagonals intersecting at M. $S \widehat{Q} R=41^{\circ}$

5.1.1 Write down the size of \widehat{M}_{2}
$\widehat{M}_{2}=90^{\circ}$
5.1.2 Calculate the value of x

5.1.3 Calculate y
(4)

$Q \widehat{S} R=41^{\circ}$	
$y=41^{\circ}+41^{\circ}$	
$y=82^{\circ}$	esides $; \angle S$

5.2 DEGF is a rhombus.

Calculate the value of x

$\widehat{E}_{1}=50^{\circ}$	$=$ sides $;=\angle s$	
$\widehat{D}_{1}+50^{\circ}+50^{\circ}=180^{\circ}$	$\angle s$ of $a \Delta$	
$\widehat{\mathbf{D}}_{1}=\mathbf{8 0}$		
$\widehat{F}_{1}=80^{\circ}$	corresp. $\angle S ; D E \\| F G \checkmark$	
$\widehat{G}_{3}=x$	$=$ sides $;=\angle s$	
$\begin{aligned} & \widehat{F}_{1}=x+x \\ & x+x=80^{\circ} \end{aligned}$	ext. \angle of a Δ	
$2 x=80^{\circ}$		
$x=40^{\circ}$		

QUESTION 6

In the figure $\mathrm{KN}=\mathrm{NM}$ and $\hat{L}=\hat{P}$.

6.1 Prove that $\triangle \mathrm{KNL} \equiv \triangle \mathrm{MNP}$
(4)

R9102
In $\triangle K N M$ and $\triangle M N P$:
$\begin{array}{ll}\text { (1) } K N=N M & \text { given }\end{array}$
(2) $\widehat{D}=\hat{L} \quad$ given

B $\widehat{N}_{1}=\widehat{N}_{2} \quad$ vert.opp. $\angle S$
$\therefore \triangle K N L \equiv \triangle M N P \quad$ (SAA)
6.2 Hence, prove that $\mathrm{NL}=\mathrm{PN}$.
$\triangle K N L \equiv \triangle M N P \quad$ proven above
$\therefore N L=P N$
6.3 Prove that the quadrilateral, formed by the points $\mathrm{K}, \mathrm{L}, \mathrm{M}$ and P , is a parallelogram.
(3)

R1101

QUESTION 7

In $\triangle P Q R: Q T=T R, W V=12 \mathrm{~cm}$ and $P W=W S=S R$.

7.1 Give a reason why ST//WQ.

The Midpoint Theorem
7.2 Calculate the length of VQ .
(6)

$S T=24$	Midpt.Theorem	
$W Q=48$	Midpt.Theorem	
$\begin{aligned} V Q & =48-12 \\ & =36 \mathrm{~cm} \end{aligned}$		

[7]

Total: 75 Marks

