

basic education

Department: Basic Education **REPUBLIC OF SOUTH AFRICA**

NATIONAL SENIOR CERTIFICATE

GRADE 12

MATHEMATICS P1

NOVEMBER 2014

.

MARKS: 150

I.

TIME: 3 hours

This question paper consists of 10 pages and 1 information sheet.

Please turn over

INSTRUCTIONS AND INFORMATION

Read the following instructions carefully before answering the questions.

- 1. This question paper consists of 12 questions.
- 2. Answer ALL the questions.
- 3. Number the answers correctly according to the numbering system used in this question paper.
- 4. Clearly show ALL calculations, diagrams, graphs, et cetera that you have used in determining your answers.
- 5. Answers only will not necessarily be awarded full marks.
- 6. You may use an approved scientific calculator (non-programmable and non-graphical), unless stated otherwise.
- 7. If necessary, round off answers to TWO decimal places, unless stated otherwise.
- 8. Diagrams are NOT necessarily drawn to scale.
- 9. An information sheet with formulae is included at the end of the question paper.
- 10. Write neatly and legibly.

QUESTION 1

1.1	Solve fo	Solve for <i>x</i> :			
	1.1.1	(x-2)(4+x) = 0	(2)		
	1.1.2	$3x^2 - 2x = 14$ (correct to TWO decimal places)	(4)		
	1.1.3	$2^{x+2} + 2^x = 20$	(3)		
1.2	Solve th	e following equations simultaneously:			
	x = 2y +	- 3			
	$3x^2-5x$	xy = 24 + 16y	(6)		
1.3	Solve fo	or x: $(x-1)(x-2) < 6$	(4)		
1.4	The root	ts of a quadratic equation are: $x = \frac{3 \pm \sqrt{-k-4}}{2}$			
	For which	ch values of k are the roots real?	(2)		
			[21]		
QUES	TION 2				
Given	the arithme	tic series: $2 + 9 + 16 +$ (to 251 terms).			
2.1	Write do	own the fourth term of the series.	(1)		
2.2	Calculat	te the 251^{st} term of the series.	(3)		

- 2.3 Express the series in sigma notation. (2)
- 2.4 Calculate the sum of the series. (2)
 2.5 How many terms in the series are divisible by 4? (4)
- [12]

QUESTION 3

3.3	Determine	e the value of: $(1+\frac{1}{2})(1+\frac{1}{3})(1+\frac{1}{4})(1+\frac{1}{5})$ up to 98 factors.	(4) [19]
	3.2.2	Calculate the sum of the first 10 terms of the sequence.	(2)
	3.2.1	Calculate the value of the 12 th term. (Leave your answer in simplified exponential form.)	(3)
3.2	The first t	hree terms of a geometric sequence are: 16;4;1	
	3.1.3	The first difference between two consecutive terms of the sequence is 96. Calculate the values of these two terms.	(4)
	3.1.2	Determine the n^{th} term of the sequence.	(4)
	3.1.1	Write down the value of <i>p</i> .	(2)
3.1	Given the	quadratic sequence: -1 ; -7 ; -11 ; p ;	

QUESTION 4

The diagram below shows the hyperbola g defined by $g(x) = \frac{2}{x+p} + q$ with asymptotes y = 1 and x = -1. The graph of g intersects the x-axis at T and the y-axis at (0; 3). The line y = x intersects the hyperbola in the first quadrant at S.

4.1	Write down the values of p and q .	(2)
-----	--	-----

4.2 Calculate the *x*-coordinate of T. (2)

4.3 Write down the equation of the vertical asymptote of the graph of h, if h(x) = g(x+5) (1)

4.4 Calculate the length of OS.

4.5 For which values of k will the equation g(x) = x + k have two real roots that are of opposite signs? (1)

Copyright reserved

(5)

[11]

QUESTION 5

Given: $f(x) = \log_a x$ where a > 0. $S\left(\frac{1}{3}; -1\right)$ is a point on the graph of f.

5.1	Prove that $a = 3$.	(2)
5.2	Write down the equation of h , the inverse of f , in the form $y =$	(2)
5.3	If $g(x) = -f(x)$, determine the equation of g.	(1)
5.4	Write down the domain of g .	(1)
5.5	Determine the values of x for which $f(x) \ge -3$.	(3) [9]

QUESTION 6

Given: $g(x) = 4x^2 - 6$ and $f(x) = 2\sqrt{x}$. The graphs of g and f are sketched below. S is an x-intercept of g and K is a point between O and S. The straight line QKT with Q on the graph of f and T on the graph of g, is parallel to the y-axis.

6.1	Determi	Determine the <i>x</i> -coordinate of S, correct to TWO decimal places.	
6.2	Write do	own the coordinates of the turning point of g .	(2)
6.3	6.3.1	Write down the length of QKT in terms of x , where x is the x -coordinate of K.	(3)
	6.3.2	Calculate the maximum length of QT.	(6) [13]

QUESTION 7

- 7.1 Exactly five years ago Mpume bought a new car for R145 000. The current book value of this car is R72 500. If the car depreciates by a fixed annual rate according to the reducing-balance method, calculate the rate of depreciation. (3)
- 7.2 Samuel took out a home loan for R500 000 at an interest rate of 12% per annum, compounded monthly. He plans to repay this loan over 20 years and his first payment is made one month after the loan is granted.

7.2.1	Calculate the value of Samuel's monthly instalment.	(4)
7.2.2	Melissa took out a loan for the same amount and at the same interest rate as Samuel. Melissa decided to pay R6 000 at the end of every month. Calculate how many months it took for Melissa to settle the loan.	(4)
7.2.3	Who pays more interest, Samuel or Melissa? Justify your answer.	(2)

QUESTION 8

8.1	Determine $f'(x)$ from first principles if $f(x) = x^3$.	(5)
-----	---	-----

8.2 Determine the derivative of:
$$f(x) = 2x^2 + \frac{1}{2}x^4 - 3$$
 (2)

8.3 If
$$y = (x^6 - 1)^2$$
, prove that $\frac{dy}{dx} = 12x^5\sqrt{y}$, if $x > 1$. (3)

8.4 Given:
$$f(x) = 2x^3 - 2x^2 + 4x - 1$$
. Determine the interval on which f is concave up. (4)

[14]

[13]

(3) [**13**]

9 NSC

QUESTION 9

Given:
$$f(x) = (x+2)(x^2 - 6x + 9)$$

= $x^3 - 4x^2 - 3x + 18$

- 9.1 Calculate the coordinates of the turning points of the graph of f. (6)
- 9.2 Sketch the graph of f, clearly indicating the intercepts with the axes and the turning points. (4)
- 9.3 For which value(s) of x will x f'(x) < 0?

QUESTION 10

A box is made from a rectangular piece of cardboard, 100 cm by 40 cm, by cutting out the shaded areas and folding along the dotted lines as shown in the diagram above.

10.1	Express the length l in terms of the height h .	(1)
10.2	Hence prove that the volume of the box is given by $V = h(50 - h)(40 - 2h)$	(3)
10.3	For which value of h will the volume of the box be a maximum?	(5) [9]

QUESTION 11

A survey concerning their holiday preferences was done with 180 staff members. The options they could choose from were to:

- Go to the coast
- Visit a game park
- Stay at home

The results were recorded in the table below:

	Coast	Game Park	Home	Total
Male	46	24	13	83
Female	52	38	7	97
Total	98	62	20	180

11.1 Determine the probability that a randomly selected staff member:

		TOTAL:	150
	12.2.2	If the three silver cars must be parked next to each other, determine in how many different ways the cars can be parked.	(3) [9]
	12.2.1	In how many different ways can ALL the cars be parked?	(2)
12.2	Seven cars straight lin	s of different manufacturers, of which 3 are silver, are to be parked in a e.	
	12.1.2	The password must start with a 'D' and end with an 'L'	(2)
	12.1.1	All the letters of the alphabet can be used	(2)
12.1 A password consists of five different letters of the English alphabet. Each letter n be used only once. How many passwords can be formed if:		d consists of five different letters of the English alphabet. Each letter may ly once. How many passwords can be formed if:	
QUEST	ION 12		
11.2	Are the ev answer wit	ents 'being a male' and 'staying at home' independent events. Motivate your the relevant calculations.	(4) [7]
	11.1.2	Does not prefer visiting a game park	(2)
	11.1.1	Is male	(1)

A = P(1+ni)

 $T_n = ar^{n-1}$

 $T_n = a + (n-1)d$

 $F = \frac{x\left[(1+i)^n - 1\right]}{i}$

NSC

INFORMATION SHEET

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$A = P(1+ni) \qquad A = P(1-ni) \qquad A = P(1-i)^n \qquad A = P(1+i)^n$$

$$T_n = a + (n-1)d \qquad S_n = \frac{n}{2} [2a + (n-1)d]$$

$$T_n = ar^{n-1} \qquad S_n = \frac{a(r^n - 1)}{r-1} \quad ; r \neq 1 \qquad S_{\infty} = \frac{a}{1-r} \quad ; -1 < r < 1$$

$$F = \frac{x[(1+i)^n - 1]}{i} \qquad P = \frac{x[1-(1+i)^{-n}]}{i}$$

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \qquad M\left(\frac{x_1 + x_2}{2}; \frac{y_1 + y_2}{2}\right)$$
$$y = mx + c \qquad y - y_1 = m(x - x_1) \qquad m = \frac{y_2 - y_1}{x_2 - x_1} \qquad m = ta$$

$$y = mx + c$$

 $m = \tan \theta$

$$(x-a)^{2} + (y-b)^{2} = r^{2}$$

In $\triangle ABC$: $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$
 $a^{2} = b^{2} + c^{2} - 2bc.\cos A$
 $area \ \triangle ABC = \frac{1}{2}ab.\sin C$

 $\sin(\alpha + \beta) = \sin \alpha . \cos \beta + \cos \alpha . \sin \beta$ $\sin(\alpha - \beta) = \sin \alpha . \cos \beta - \cos \alpha . \sin \beta$ $\cos(\alpha + \beta) = \cos \alpha . \cos \beta - \sin \alpha . \sin \beta$ $\cos(\alpha - \beta) = \cos \alpha . \cos \beta + \sin \alpha . \sin \beta$

$$\cos 2\alpha = \begin{cases} \cos^2 \alpha - \sin^2 \alpha \\ 1 - 2\sin^2 \alpha \\ 2\cos^2 \alpha - 1 \end{cases}$$

 $\sin 2\alpha = 2\sin \alpha . \cos \alpha$

$$\sigma^2 = \frac{\sum_{i=1}^n (x_i - \overline{x})^2}{n}$$

$$P(A \text{ or } B) = P(A) + P(B) - P(A \text{ and } B)$$

$$b = \frac{\sum (x - \bar{x})(y - \bar{y})}{\sum (x - \bar{x})^2}$$

Copyright reserved

 $\overline{x} = \frac{\sum fx}{n}$

 $P(A) = \frac{n(A)}{n(S)}$

 $\hat{y} = a + bx$